If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+15x-60=0
a = 9; b = 15; c = -60;
Δ = b2-4ac
Δ = 152-4·9·(-60)
Δ = 2385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2385}=\sqrt{9*265}=\sqrt{9}*\sqrt{265}=3\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{265}}{2*9}=\frac{-15-3\sqrt{265}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{265}}{2*9}=\frac{-15+3\sqrt{265}}{18} $
| 2(4a-3)=4a-78 | | 2x–10=-32 | | 3/8x+15/2=8 | | -5a+2=10-9a | | 2a-1=7a+44 | | 9/2m=5/6 | | 12(x+8)=12(2x+1) | | 13a+7=8a+27 | | 8y+17=47-3 | | -1/2(12x-42)=-33 | | 6-11x=7x-22 | | 1=7−2m | | (-3+(2/3)(6x-42))=-51 | | X^2+6x+240=0 | | -y=-108+2y | | 2/3(4x-7)=2 | | -3(4x+1)+2x=57 | | -6x+6x=12 | | (5x-1)/2-(5x-2)/3=1 | | 2x-3=2×(3x-1)-5 | | -15-2(x-1)-3x=-3 | | 2x-4(x-5)=-6+5x+12 | | 5-(6x-19)=-18 | | 1/64=4^x | | 3x^2+2=13 | | 54+3u=12u | | 3t+3|5|=6 | | 5y+22=7(y+6) | | 18=14y-5y | | 8y+y=81 | | 2x+5=6(x-1)+3 | | 2x+5=6(x+1)+3 |